Reg	J. No. :
Nar	ne :
	Common Entrance Examination, for Admission to the M.Phil Courses, 2020
	PHYSICS
Time	e : 3 Hours Max. Marks : 100
I.	Answer all questions. Each question carries 1 mark.
1.	Which one of the following is a fermion?
*	(a) α particle (b) $_4Be^2$ nucleus
	(c) Hydrogen atom (d) deuteron
2.	Find the Laplace transform of $\delta(t)$
	(a) 1 (b) 0
	(c) ∞ (d) 2
3.	Which of the following expressions represents the correct distribution of the electrons in the conduction band? ($gc(E)$ =density of quantum states, $fF(E)$ =Fermui dirac probability
	(a) $n(E) = gc(E) * fF(E)$ (b) $n(E) = gc(-E) * fF(E)$

(d)

n(E) = gc(E) * fF(E)

n(E) = gc(E) * fF(-E)

(a)

(c)

n(E) = gc(-E) * fF(-E)

	4.	If the sheet of a Bakelite is inserted between the plates of an air capacitor, the capacitance will be
		(a) decrease (b) increase (c) remains unchanged (d) become zero
	5.	According to quantum mechanics, for the particle moving in a box
		(a) Energy levels are discrete and equispaced
		(b) Energy levels are continuous
		(c) Energy levels are discrete but not equispaced
		(d) Energy is always zero
	6.	A 2 \times 4 decoder with an enable input can function as a
		(a) 4 × 1 multiplexer
,		(b) 1×4 demultiplexer (c) 4×2 encoder
		(d) 4 × 2 priority encoder
	7.	A Zener diode with an operating voltage of 10 V at 25°C has a positive temperature coefficient of 0.07% per °C of the operating voltage. The operating voltage of this Zener diode at 125°C is
		(a) 12.0 V (b) 11.7 V
		(c) 10.7 V (d) 9.3 V
		2 K – 1100

- 8. Divergence of $\vec{F}(x, y, z) = e^{xy}\hat{i} \cos y\hat{j} + (\sin z)^2\hat{k}$
 - (a) $ye^{xy} + \cos y + 2\sin z \cos z$
 - (b) $ye^{xy} \sin y + 2 \sin z \cos z$
 - (c) 0
 - (d) $ye^{xy} + \sin y + 2\sin z \cdot \cos z$
- 9. Which one of the following CANNOT be explained by considering a harmonic approximation for the lattice vibrations in solids?
 - (a) Deby's T^3 law

- (b) Dulong Petit's law
- (c) Optical branches in lattices
- (d) Thermal expansion
- 10. The thermal conductivity of a given material reduces when it undergoes a transition from its normal state to the superconducting state. The reason is.
 - (a) The Cooper pairs cannot transfer energy to the lattice
 - (b) Upon the formation of Cooper pairs, the lattice becomes less efficient in heat transfer
 - (c) The electrons in the normal state lose their ability to transfer heat because of their coupling to the Cooper pairs
 - (d) The heat capacity increases on transition to the superconducting state leading to a reduction in thermal conductivity
- 11. Let \vec{r} be the position vector of the point P(x,y,z) in the three-dimensional real vector space and $\varphi(x,y,z)$ be a harmonic function (that satisfies Laplace's equation), then $\vec{F} = \vec{\nabla} \varphi + \vec{r}$ is
 - (a) neither solenoidal nor irrotational
 - (b) solenoidal but not irrotational
 - (c) irrotational but not solenoidal
 - (d) both solenoidal and irrotational

(a) 40 (b) 20 (c) 80 (d) 160 13. The probability of finding a particle in differential region dx is. (a) $\psi(x,t)$ dx. (b) $\psi(x,t)*dx$. (c) $[\psi(x,t)*\psi(x,t)] dx$ (d) $\psi(x,t)*\psi(x,t) dx = \psi(x,t) ^2 dx$ 14. The density of electrons in a crystal below the Fermi level E_F varies as (a) $E_F^{1/2}$ (b) $E_F^{2/3}$ (c) $E_F^{3/2}$ (d) $E_F^{5/2}$ 15. A plane electromagnetic wave traveling in free space is incident normally on a material of refractive index 3/2. Assuming no absorption, its reflectivity is (a) 4% (b) 16% (c) 20% (d) 50% 16. The eigen values of a matrix are $i, -2i$ and $3i$. The matrix is (a) Unitary (b) anti-unitary (c) Hermitian	12.	The power per unit velocity of a wave 10 units is	e with electric field as 8 units and density
 13. The probability of finding a particle in differential region dx is. (a) ψ(x,t) dx. (b) ψ(x,t)* dx (c) [ψ(x,t)*/ψ(x,t)] dx (d) ψ(x,t)*ψ(x,t) dx = ψ(x,t) ² dx 14. The density of electrons in a crystal below the Fermi level E_F varies as (a) E_F^{1/2} (b) E_F^{2/3} (c) E_F^{3/2} (d) E_F^{5/2} 15. A plane electromagnetic wave traveling in free space is incident normally on a material of refractive index 3/2. Assuming no absorption, its reflectivity is (a) 4% (b) 16% (c) 20% (d) 50% 16. The eigen values of a matrix are i, -2i and 3i. The matrix is (a) Unitary (b) anti-unitary 		(a) 40	(b) 20
 (a) ψ(x,t) dx. (b) ψ(x,t)* dx (c) [ψ(x,t)*/ψ(x,t)] dx (d) ψ(x,t)*ψ(x,t) dx = ψ(x,t) ² dx 14. The density of electrons in a crystal below the Fermi level E_F varies as (a) E_F^{1/2} (b) E_F^{2/3} (c) E_F^{3/2} (d) E_F^{5/2} 15. A plane electromagnetic wave traveling in free space is incident normally on a material of refractive index 3/2. Assuming no absorption, its reflectivity is (a) 4% (b) 16% (c) 20% (d) 50% 16. The eigen values of a matrix are i, -2i and 3i. The matrix is (a) Unitary (b) anti-unitary 			
 (a) ψ(x,t) dx. (b) ψ(x,t)* dx (c) [ψ(x,t)*/ψ(x,t)] dx (d) ψ(x,t)*ψ(x,t) dx = ψ(x,t) ² dx 14. The density of electrons in a crystal below the Fermi level E_F varies as (a) E_F^{1/2} (b) E_F^{2/3} (c) E_F^{3/2} (d) E_F^{5/2} 15. A plane electromagnetic wave traveling in free space is incident normally on a material of refractive index 3/2. Assuming no absorption, its reflectivity is (a) 4% (b) 16% (c) 20% (d) 50% 16. The eigen values of a matrix are i, -2i and 3i. The matrix is (a) Unitary (b) anti-unitary 	13.	The probability of finding a particle in d	ifferential region dx is.
 (c) [ψ(x,t)*/ψ(x,t)] dx (d) ψ(x,t)*ψ(x,t) dx = ψ(x,t) ² dx 14. The density of electrons in a crystal below the Fermi level E_F varies as (a) E_F^{1/2} (b) E_F^{2/3} (c) E_F^{3/2} (d) E_F^{5/2} 15. A plane electromagnetic wave traveling in free space is incident normally on a material of refractive index 3/2. Assuming no absorption, its reflectivity is (a) 4% (b) 16% (c) 20% (d) 50% 16. The eigen values of a matrix are i, -2i and 3i. The matrix is (a) Unitary (b) anti-unitary 			
(d) $\psi(x,t)*\psi(x,t) dx = \psi(x,t) ^2 dx$ 14. The density of electrons in a crystal below the Fermi level E_F varies as (a) $E_F^{1/2}$ (b) $E_F^{2/3}$ (c) $E_F^{3/2}$ (d) $E_F^{5/2}$ 15. A plane electromagnetic wave traveling in free space is incident normally on a material of refractive index 3/2. Assuming no absorption, its reflectivity is (a) 4% (b) 16% (c) 20% (d) 50% 16. The eigen values of a matrix are i , $-2i$ and $3i$. The matrix is (a) Unitary (b) anti-unitary	•	(b) $\psi(x,t)*dx$	
 14. The density of electrons in a crystal below the Fermi level E_F varies as (a) E_F^{1/2} (b) E_F^{2/3} (c) E_F^{3/2} (d) E_F^{5/2} 15. A plane electromagnetic wave traveling in free space is incident normally on a material of refractive index 3/2. Assuming no absorption, its reflectivity is (a) 4% (b) 16% (c) 20% (d) 50% 16. The eigen values of a matrix are i, -2i and 3i. The matrix is (a) Unitary (b) anti-unitary 		(c) $[\psi(x,t)*/\psi(x,t)] dx$	
 (a) E_F^{1/2} (b) E_F^{2/3} (c) E_F^{3/2} (d) E_F^{5/2} 15. A plane electromagnetic wave traveling in free space is incident normally on a material of refractive index 3/2. Assuming no absorption, its reflectivity is (a) 4% (b) 16% (c) 20% (d) 50% 16. The eigen values of a matrix are i, -2i and 3i. The matrix is (a) Unitary (b) anti-unitary 		(d) $\psi(x,t) * \psi(x,t) dx = \psi(x,t) ^2 dx$	
 (c) E_F^{3/2} (d) E_F^{5/2} 15. A plane electromagnetic wave traveling in free space is incident normally on a material of refractive index 3/2. Assuming no absorption, its reflectivity is (a) 4% (b) 16% (c) 20% (d) 50% 16. The eigen values of a matrix are i, -2i and 3i. The matrix is (a) Unitary (b) anti-unitary 	14.	The density of electrons in a crystal bel	low the Fermi level $E_{\it F}$ varies as
 15. A plane electromagnetic wave traveling in free space is incident normally on a material of refractive index 3/2. Assuming no absorption, its reflectivity is (a) 4% (b) 16% (c) 20% (d) 50% 16. The eigen values of a matrix are i, -2i and 3i. The matrix is (a) Unitary (b) anti-unitary 		(a) $E_F^{1/2}$	(b) $E_F^{2/3}$
material of refractive index 3/2. Assuming no absorption, its reflectivity is (a) 4% (b) 16% (c) 20% (d) 50% 16. The eigen values of a matrix are <i>i</i> , – 2 <i>i</i> and 3 <i>i</i> . The matrix is (a) Unitary (b) anti-unitary		(c) $E_F^{3/2}$	(d) $E_F^{5/2}$
(c) 20% (d) 50% 16. The eigen values of a matrix are i , $-2i$ and $3i$. The matrix is (a) Unitary (b) anti-unitary	15.	A plane electromagnetic wave travelir material of refractive index 3/2. Assumi	ng in free space is incident normally on a ng no absorption, its reflectivity is
16. The eigen values of a matrix are i , $-2i$ and $3i$. The matrix is (a) Unitary (b) anti-unitary		(a) 4%	(b) 16%
(a) Unitary (b) anti-unitary		(c) 20%	(d) 50%
(b) anti-unitary	16.	The eigen values of a matrix are $i, -2i$	and 3i. The matrix is
(c) Hermitian (d) anti-hermitian		(a) Unitary	(b) anti-unitary
		(c) Hermitian	(d) anti-hermitian

17.	The power in an amplitude modulated wave having modulation 100% and carrie power 10 W is
	(a) 10 W (b) 15 W
	(c) 20 W (d) 25 W
18.	The number of distinct ways of placing four bosons into five distinguishable boxes is
	(a) 40 (b) 50
	(c) 60 (d) 70
19.	The limit point of the poles of a function $f(z)$ is
	(a) A pole
	(b) A non-isolated singularity
•	(c) An isolated singularity
	(d) A non-isolated essential singularity
20.	The role of a project supervisor is to
	(a) provide academic support, guidance and critical feedback on your work
	(b) give you a reading list
	(c) negotiate access to the research setting on the students behalf
	(d) ensure you keep to your schedule and deadlines
21.	Which of the following is a criterion for a good research question?
	(a) Questions should be long and use complex terms
	(b) Questions should show where my research biases are
	(c) Questions should sound contemporary
	(d) Questions should connect with established theory and research

22.	Which of the following does not corresearch?		ne under sub-classification of quantitativ		
	(a) (c)	Inferential approach Simulation approach	(b)	Experimental approach Relative approach	
23.	Whi	ch of the following should be include	led ir	a research proposal?	
-	(a) (b)	Your academic status Your academic			
	(c)	Your choice of research methods	and ı	reasons for choosing them	
24.	(d) In th	All of the above ne process of conducting research,	Form	nulation of hypothesis is followed by	
	(a)	Definition of research Review of theories	(b)	Review of concepts	
25.	(c) For	any operator \hat{A} , $i(A^+ - A)$ is	(a)	Design of research	
	(a)	Unitary Hermitian	(b)	Orthogonal	
26.	(c) The	e numerical error in the trapezoidal	(c) Tule c	Anti-Hermitian If step size h is of the order of	
\$	(a)	h^3	71.5	h^4	
	(c)	h '	(d)	h ²	

27.	if th	ne equation of state for a gas with	internal energy <i>U</i> is $PV = \frac{2}{3}U$, then the
	valu	ue of the ratio C_p / C_v is	
	(a)	5/2	(b) 3/5
	(c)	2/5	(d) 5/3
28.	The	Lagrangian for a charged particle i	n an electromagnetic field is given by
	(a)	$T - e\varphi + (e / c) A.v$	(b) $T + e\varphi + (e/c) A.v$
,	(c)	$T + e\varphi - (e / c) A.v$	(d) $T - e\varphi - (e / c) A.v$
29.	one	lowest quantum mechanical dimensional box of size L is 2e bund state for a system of three non-	energy of a particle confined in a /. The energy of the quantum mechanical interacting spin 1/2 particles is
	(a)	6 eV	(b) 10 eV
	(c)	12 eV	(d) 16 eV
30.	A pl	hoton has a spin of	
	(a)	2	(b) 1/2
	(c)	1	(d) 0
31.	The	e relative magnetic permeability of a	type-I super conductor is
	(a)	0	(b) -1
	(c)	2π	(d) 3π
32.	The	e value of integral $\int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx$ is	
	(a)	$-\pi$	(b) $+\pi$
	(c)	0	(d) Indeterminate
	•		4400

	i v	the term sy	mbols lies deep	est?
33.	In the sp configuration, wh	nich of the to	$^{3}P_{0}$	
	(a) ${}^{1}P_{1}$	(b)	³ <i>P</i> ₁	
	(c) $^{3}P_{2}$	•	for a general	olootrom
34.	The number of indepentensor is	dent components	TOI a general	electromagnetic field
	(a) 4	(b)	6	
	(c) 8	(d)	9	
35.	The order of magnitude o	f the binding energ	y per nucleon in	a nucleus is
	(a) 10 ⁻⁵ MeV		10 ⁻³ MeV	
	(c) 0.1 MeV	(d)	10 MeV	
36.	The logic expression \overline{AB}	$C + \overline{AB}C + AB\overline{C}$	$+ A\overline{B}\overline{C}$ can be s	implified to
	(a) A XOR C	(b)	A AND C	
	(c) 0	(d)	1	
37.	An amplifier has a gain reduced to 240, then the	of 300. When neg feedback ratio is	ative feedback i	s applied, the gain is
	(a) 5/4	(b)	1/1200	
	(c) 60	(d)	-1/300	
38.	The volume of a radiation to 640 cm ³ . The temperature	n cavity at 200K is	s adiabatically in	creased from 10 cm ³
	(a) 800 K		700 K	•
	(c) 600 K	(d)	500 K	
				K – 1100

- 39. If a fine structure splitting between $2P_{3/2}$ and $2P_{1/2}$ levels of hydrogen atom is 0.4 cm⁻¹, the corresponding splitting in Li^{2+} well approximately be
 - (a) 1.2 cm⁻¹

(b) 10.8 cm⁻¹

(c) 32.4 cm⁻¹

- (d) 36.8 cm⁻¹
- 40. The value of the lande g factor for a fine structure level having the quantum numbers. L = I, J = 2 and S = 1 is
 - (a) 11/6

(b) 4/3

(c) 8/3

(d) 3/2

 $(40 \times 1 = 40 \text{ Marks})$

- II. Answer all questions. Each question carries 5 marks.
- 41. What are the characteristics of an ideal op amp?
- 42. What are scalar and vector potentials? Deduce the Maxwell's equations in terms of these potentials.
- 43. What is Hall Effect? Derive an expression for the Hall coefficient.
- 44. State and explain D'Alemberts principle.
- 45. Compute the integral $\int_{0}^{\infty} \frac{dx}{(1+x^4)}$ using the residue theorem.
- 46. What is mutual exclusion principle? Give examples.
- 47. State the steps in the construction of a questionnaire.
- 48. Define hypothesis and state the characteristics of a good hypothesis.
- 49: What is Presentation tool? Explain its features and functions.

- 50. List out the advantages and disadvantages of sampling.
- 51. Explain the method of least square linear fitting with an example.
- 52. What is Chi-square test? Explain the significance in statistical analysis of any research problem.

 $(12 \times 5 = 60 \text{ Marks})$

ANSWER KEY TO THE QUESTION PAPER

	FISTION	ANGWED		
QUESTION NUMBER		ANSWER		
		KEY		
	1	D		
	1 1			
	2	Α		
	3	Α		
	3	A		
	4	В		
	5	C		
		_		
	1	_		
	6	В		
	7	C ·		
		C		
	0			
	8	. D		
	9	D		
İ	10	D		
	10	·		
-	11			
	11	С		
L				
	12	С		
	13	В		
	13	ь		
-				
	14	С		
	15	Α		
-	16	D		
	10	D		
_				
	17	Α		
-	18	D		
_	19			
	1.7	D .		
_				
20		Α		
-				

ANSWER KEY TO THE QUESTION PAPER

21	D
22	D
23	С
24	D
25	С
26	D
` 27	В
28	А
29	. С
30	С
31	А
32	А
33	В
34	В
35	D
36	А
37	В
38	D
39	С
40	D